Mathematics Question Review (2025-10-01)

校園
#1 もも
01/10/25 01:03

Question:

Denote a sequence {a_n}

= 1 + 1/2 + 1/3 + ... + 1/n - ln(n),

where n = 1, 2, 3 ....

Show that {a_n} converges.

答案聽日開估

#2 もも
01/10/25 01:06

Topic: Limit of a sequence (HKAL)

Every NDS and PSP from graduate entrance exams have learnt this topic already.

#3 もも
01/10/25 14:42

Hints:

Note: x/(x+1) = 1- 1/(x+1)

#4 もも
01/10/25 14:46

Second hint:

#5 もも
01/10/25 14:51

Third hint:

ln(1+1) + ln(1+1/2) + ... + ln(1+1/n) = ln(n+1)

#6 もも
01/10/25 15:10

Now 0 < 1/(n+1) < ln(1+ 1/n) < 1/n

∑ 1/(n+1) < ∑ ln(1+ 1/n) = ln(n+1)

and -ln(n) < ln(1/n) < 0 <1/n

Then ln(n+1) + 1/n = ln(n+1) + (-1/n) > 0

Now we manage to show that {a_n} has lower bound 0 and is strictly decreasing as n increases, so the sequence converges. Q.E.D.

#7 もも
01/10/25 15:16

嗱,HKAL 純數望落好難,但落手落腳做嘅時候,

好多時都係講緊gimmicks同rules of thumb,

肯操就肯定合格,夠小心夠快計完數就 aim ABC

當然如果你成日犯基本manipulation mistakes,

就同烏大龜計數慢一樣,與大學無緣

#8 もも
01/10/25 15:17

Now 0 < 1/(n+1) < ln(1+ 1/n) < 1/n

∑ 1/(n+1) < ∑ ln(1+ 1/n) = ln(n+1)

and -ln(n) < ln(1/n) < 0 <1/n

Then ln(n+1) + 1/n = ln(n+1) + (-1/n) > 0

Now we manage to show that {a_n} has lower bound 0 and is strictly decreasing as n increases, so the sequence converges. Q.E.D.

ln(n+1) + 1/n > ln(n+1) + (-1/n) > 0

#9 もも
01/10/25 15:17

Now 0 < 1/(n+1) < ln(1+ 1/n) < 1/n

∑ 1/(n+1) < ∑ ln(1+ 1/n) = ln(n+1)

and -ln(n) < ln(1/n) < 0 <1/n

Then ln(n+1) + 1/n = ln(n+1) + (-1/n) > 0

Now we manage to show that {a_n} has lower bound 0 and is strictly decreasing as n increases, so the sequence converges. Q.E.D.

ln(n+1) + 1/n > ln(n+1) + (-1/n) > 0

嗱,你無睇錯,烏大龜的確心大,成日犯低級錯誤

#10 もも
01/10/25 15:19

Now 0 < 1/(n+1) < ln(1+ 1/n) < 1/n

∑ 1/(n+1) < ∑ ln(1+ 1/n) = ln(n+1)

and -ln(n) < ln(1/n) < 0 <1/n

Then ln(n+1) + 1/n = ln(n+1) + (-1/n) > 0

Now we manage to show that {a_n} has lower bound 0 and is strictly decreasing as n increases, so the sequence converges. Q.E.D.

ln(n+1) + 1/n > ln(n+1) + (-1/n) > 0

嗱,你無睇錯,烏大龜的確心大,成日犯低級錯誤

ln(n+1) + 1/n > ln(n+1) + (-ln(n)) > 0

#11 もも
01/10/25 15:20

留意n係整數,所以n>0

#12 もも
01/10/25 15:21

More:

#13 もも
01/10/25 17:50

ln(n+1) + 1/n > ln(n+1) + (-1/n) > 0

嗱,你無睇錯,烏大龜的確心大,成日犯低級錯誤

ln(n+1) + 1/n > ln(n+1) + (-ln(n)) > 0

and -ln(n) = ln(1/n) < 0 <1/n

#14 もも
01/10/25 17:53

做數講求經驗,無經驗就無heuristics

烏大龜就係識concept但成日表達錯誤,

證明佢預科階段計數經驗不足,

正如計integration by part,

平唔計數就極易臨場sub錯數浪費時間,

仲未計poor presentation, 計完又唔撚proofread

這就是他高中一個A都攞唔到嘅根本原因: 粗枝大葉

#15 もも
01/10/25 18:00

and -ln(n) = ln(1/n) 0 <1/n

since min(n) = 1

#16 もも
01/10/25 18:21

畫圖就知 n > ln(n) 等同阿媽係女人,

不過在HKAL Pure Math都要循例用微積分證明

本主題共有 16 則回覆,第 1 頁。