Some math items

學術
#1 Dow Jones
19/09/25 21:12

#2 Dow Jones
19/09/25 21:12

#3 Dow Jones
19/09/25 21:13

#4 Dow Jones
19/09/25 21:20

#5 Dow Jones
20/09/25 18:12

Note that we are not discussing complex logarithms, so n is expected to be an integer, i.e. n > 1 as a base of any positive exponents.

Erratum:

ln(n)/n > ln(2-1)/2 = 0

#6 Dow Jones
20/09/25 18:15

Note that we are not discussing complex logarithms, so n is expected to be an integer, i.e. n > 1 as a base of any positive exponents.

Erratum:

ln(n)/n > ln(2-1)/2 = 0

And when taking the limit,

we are dealing with positive infinity.

For negative infinity, complex logarithms are not bijective.

So you see, the workout is such a shithole.

#7 Dow Jones
20/09/25 19:14

基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵

此外,

從呢幅Wolframalpha嘅公式,

即使n係負數,即牽涉complex numbers,

一樣計到 0 呢個結果,

但首先你要用 Euler's formula: z=re^ix

Take n>0

Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)

留意 -1 = e^i(π)

咁 ln(-1) = iπ = a constant

所以成個limit就變成 ln(n)/n + iπ/n

由於 ln(n) < n,

所以只要 n 趨向無限大,不論正負,

ln(n)/n 同 iπ•(1/n) 最後都會變成0

Q.E.D.

#8 Dow Jones
20/09/25 19:20

基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵

此外,

從呢幅Wolframalpha嘅公式,

即使n係負數,即牽涉complex numbers,

一樣計到 0 呢個結果,

但首先你要用 Euler's formula: z=re^ix

Take n>0

Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)

留意 -1 = e^i(π)

咁 ln(-1) = iπ = a constant

所以成個limit就變成 ln(n)/n + iπ/n

由於 ln(n) < n,

所以只要 n 趨向無限大,不論正負,

ln(n)/n 同 iπ•(1/n) 最後都會變成0

Q.E.D.

可見,心水清嘅人一眼就睇到,

唔駛用到#3 嘅 Sandwich Theorem,

一樣可以計到個limit e^0 = 1

不過,higher math講究 rigorous proof,

喺DSE M2同HKAL Pure Math你可以偷雞屈分,

一讀上去齋玩intuitive proof你就含得撚

#9 Dow Jones
20/09/25 19:29

基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵

此外,

從呢幅Wolframalpha嘅公式,

即使n係負數,即牽涉complex numbers,

一樣計到 0 呢個結果,

但首先你要用 Euler's formula: z=re^ix

Take n>0

Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)

留意 -1 = e^i(π)

咁 ln(-1) = iπ = a constant

所以成個limit就變成 ln(n)/n + iπ/n

由於 ln(n) < n,

所以只要 n 趨向無限大,不論正負,

ln(n)/n 同 iπ•(1/n) 最後都會變成0

Q.E.D.

for n<0,

real part tends to 1,

while imaginary part tends to 0

留意complex logarithm 中學從來唔會教

#10 Dow Jones
20/09/25 19:31

基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵

此外,

從呢幅Wolframalpha嘅公式,

即使n係負數,即牽涉complex numbers,

一樣計到 0 呢個結果,

但首先你要用 Euler's formula: z=re^ix

Take n>0

Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)

留意 -1 = e^i(π)

咁 ln(-1) = iπ = a constant

所以成個limit就變成 ln(n)/n + iπ/n

由於 ln(n) < n,

所以只要 n 趨向無限大,不論正負,

ln(n)/n 同 iπ•(1/n) 最後都會變成0

Q.E.D.

for n<0,

real part tends to 1,

while imaginary part tends to 0

留意complex logarithm 中學從來唔會教

#11 Dow Jones
20/09/25 19:35

留意#3所示有問題嘅workout,

來自大學本科讀會計嘅tutor

即係佢可能連咩係complex logarithm都未聽過

#12 Dow Jones
20/09/25 19:37

烏大龜喺郊登存在嘅目的好簡單,

就係以中學畢業生身份吃透本科程度數學handouts

大家怕悶可以直接block柒佢

本主題共有 12 則回覆,第 1 頁。