Some math items
Note that we are not discussing complex logarithms, so n is expected to be an integer, i.e. n > 1 as a base of any positive exponents.
Erratum:
ln(n)/n > ln(2-1)/2 = 0
Note that we are not discussing complex logarithms, so n is expected to be an integer, i.e. n > 1 as a base of any positive exponents.
Erratum:
ln(n)/n > ln(2-1)/2 = 0
And when taking the limit,
we are dealing with positive infinity.
For negative infinity, complex logarithms are not bijective.
So you see, the workout is such a shithole.
基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵
此外,
從呢幅Wolframalpha嘅公式,
即使n係負數,即牽涉complex numbers,
一樣計到 0 呢個結果,
但首先你要用 Euler's formula: z=re^ix
Take n>0
Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)
留意 -1 = e^i(π)
咁 ln(-1) = iπ = a constant
所以成個limit就變成 ln(n)/n + iπ/n
由於 ln(n) < n,
所以只要 n 趨向無限大,不論正負,
ln(n)/n 同 iπ•(1/n) 最後都會變成0
Q.E.D.
基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵
此外,
從呢幅Wolframalpha嘅公式,
即使n係負數,即牽涉complex numbers,
一樣計到 0 呢個結果,
但首先你要用 Euler's formula: z=re^ix
Take n>0
Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)
留意 -1 = e^i(π)
咁 ln(-1) = iπ = a constant
所以成個limit就變成 ln(n)/n + iπ/n
由於 ln(n) < n,
所以只要 n 趨向無限大,不論正負,
ln(n)/n 同 iπ•(1/n) 最後都會變成0
Q.E.D.
可見,心水清嘅人一眼就睇到,
唔駛用到#3 嘅 Sandwich Theorem,
一樣可以計到個limit e^0 = 1
不過,higher math講究 rigorous proof,
喺DSE M2同HKAL Pure Math你可以偷雞屈分,
一讀上去齋玩intuitive proof你就含得撚
基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵
此外,
從呢幅Wolframalpha嘅公式,
即使n係負數,即牽涉complex numbers,
一樣計到 0 呢個結果,
但首先你要用 Euler's formula: z=re^ix
Take n>0
Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)
留意 -1 = e^i(π)
咁 ln(-1) = iπ = a constant
所以成個limit就變成 ln(n)/n + iπ/n
由於 ln(n) < n,
所以只要 n 趨向無限大,不論正負,
ln(n)/n 同 iπ•(1/n) 最後都會變成0
Q.E.D.
for n<0,
real part tends to 1,
while imaginary part tends to 0
留意complex logarithm 中學從來唔會教
基本上,只要用complex logarithm 嘅 principal value, 就可以維持bijective特徵
此外,
從呢幅Wolframalpha嘅公式,
即使n係負數,即牽涉complex numbers,
一樣計到 0 呢個結果,
但首先你要用 Euler's formula: z=re^ix
Take n>0
Then ln(-n) = ln(n • -1) = ln(n) + ln(-1)
留意 -1 = e^i(π)
咁 ln(-1) = iπ = a constant
所以成個limit就變成 ln(n)/n + iπ/n
由於 ln(n) < n,
所以只要 n 趨向無限大,不論正負,
ln(n)/n 同 iπ•(1/n) 最後都會變成0
Q.E.D.
for n<0,
real part tends to 1,
while imaginary part tends to 0
留意complex logarithm 中學從來唔會教
留意#3所示有問題嘅workout,
來自大學本科讀會計嘅tutor
即係佢可能連咩係complex logarithm都未聽過
烏大龜喺郊登存在嘅目的好簡單,
就係以中學畢業生身份吃透本科程度數學handouts
大家怕悶可以直接block柒佢